Lean Six Sigma

Orange Belt
Skill Set

H.C. Theisens / J. Kamphuis / W. Heijnen

Specific Job Role Content Contributors:
M. Wiggers, T. Meek, G. Spork
D. Ekert, Dr. R. Messnarz,
A. Riel, S. Hoekstra
Content

1 Introduction .. 4
 1.1 LSSA - Lean Six Sigma Academy ... 4
 1.2 ECQA – European Certification and Qualification Association .. 4
2 Skill Definition Model .. 5
 2.1 Skill Set Strategy .. 5
 2.2 Definitions .. 5
 2.3 Skill Set Structure .. 6
3 Orange Belt Skill Set .. 7
 3.1 U1 – Enterprise-Wide Deployment ... 7
 3.1.1 E1 – World Class Performance ... 7
 3.1.2 E2 – Leadership ... 7
 3.2 U2 – Project Management .. 8
 3.2.1 E1 – Project Management Tools .. 8
 3.2.2 E2 – Team Formation ... 8
 3.2.3 E3 – Team Facilitation ... 8
 3.2.4 E4 – Communication ... 9
 3.3 U3 – Define .. 9
 3.3.1 E1 – Voice of the Customer (VOC) ... 9
 3.3.2 E2 – Project Charter ... 10
 3.4 U4 – Measure ... 10
 3.4.1 E1 – Process Mapping & Data Collection .. 10
 3.4.2 E2 – Statistics .. 11
 3.4.3 E3 – Measurement Systems .. 11
 3.4.4 E4 – Process Capability and Performance ... 11
 3.5 U5 – Analyse .. 12
 3.5.1 E1 – Exploratory Data Analysis ... 12
 3.5.2 E2 – Hypothesis Testing .. 12
 3.5.3 E3 – Analytical Methods .. 13
 3.6 U6 – Improve .. 14
 3.6.1 E1 – Process Improvement Methods ... 14
 3.6.2 E2 – Waste Elimination ... 14
 3.6.3 E3 – Design of Experiments (DOE) ... 15
 3.7 U7 – Control ... 15
3.7.1 E1 – Statistical Process Control (SPC) ... 15
3.7.2 E2 – Quality Assurance .. 16
3.7.3 E3 – Sustain Improvements .. 16

Appendix A – Bloom’s Taxonomy for Performance Criteria 17
Appendix B – European Qualifications Framework (EQF) for Job roles 18
Appendix B – Acronyms .. 19
Appendix C – References ... 20

Copyright © 2010 LSSA – Lean Six Sigma Academy.

All rights reserved.

The LSSA Skill Sets are public documents and can be distributed in its original and complete version. Partly republication or redistribution is prohibited without the prior written consent from LSSA. LSSA shall not be liable for any errors in the content, or for any actions taken in reliance thereon.
1 Introduction

1.1 LSSA - Lean Six Sigma Academy

It is important for businesses and organisations to continuously focus on customer satisfaction by supplying products or services with outstanding quality, cost efficiently and within the agreed lead time. Improving quality and efficiency is the domain of ‘Process Improvement’.

Realising these objectives is effectively achieved by applying Lean Six Sigma: a combination of Lean Manufacturing and Six Sigma approaches. Both management strategies are well established with proven success and are among the most applied process improvement methods in the world. Lean Six Sigma is a clear, practical and structured method to reduce lead times, production losses, quality complaints and operational expenses.

Within Lean Six Sigma, individuals can be trained at various ‘Belt levels’. These levels are called Black Belt, Green Belt, Orange Belt and Yellow Belt.

<table>
<thead>
<tr>
<th>Belt level</th>
<th>Vocational Education Training</th>
<th>Adult Education – Job roles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yellow Belt</td>
<td>Initial VET secondary level</td>
<td>Team members, Operators</td>
</tr>
<tr>
<td>Orange Belt</td>
<td>-</td>
<td>Team members, Lean Facilitators, Supervisors</td>
</tr>
<tr>
<td>Green Belt</td>
<td>Higher Education</td>
<td>Engineers, Process owners</td>
</tr>
<tr>
<td>Black Belt</td>
<td>-</td>
<td>Senior Engineers, Project Managers, Management, Consultants</td>
</tr>
</tbody>
</table>

The LSSA – Lean Six Sigma Academy – was established in September 2009 with the main objective to determine a common certification standard for Lean Six Sigma job roles. This has been realised by developing four skill sets with clear criteria and an online exam portal.

1.2 ECQA – European Certification and Qualification Association

A European certificate is also available for the above mentioned levels with the exam portal managed by the ECQA - European Certification and Qualification Association. The ECQA is a not-for-profit association which was created as a result of a number of EU-supported initiatives over the past ten years within which educational establishments decided to follow a joint process for the certification of individuals working within industry as part of the European Union’s Lifelong Learning Program.

The ECQA/LSSA exam guide can be downloaded at www.ecqa.org and at www.lssa.eu
2 Skill Definition Model

2.1 Skill Set Strategy

A skill set is a group of specific Learning Element that one should be able to apply within a certain job role. A standard group of skill sets within Europe is necessary due to the free mobility of workers. European countries such as the UK, The Netherlands, and France already have well-established open learning courses which support APL (Accreditation of Prior Learning). Within APL the skills of students are assessed, existing skills are recognised, and a learning plan is developed to cover any skill gaps. The skill assessment is based on defined skill units and a skill profile which indicates how many skill units have been covered.

LSSA has developed four skill sets that specify which of the overall Lean Six Sigma tools are expected to be included within a certain Belt level. A skill set is a group of ‘Learning Elements’ within eight ‘Skill Units’. ASQ (American Society for Quality) Body of Knowledge [5], [6] documents were used as a baseline, and have been updated according the latest insights. Each of the ‘Learning Elements’ contains several ‘Performance Criteria’. Each ‘Performance Criteria’ has an explanation and a cognitive level according to Bloom [8] which should be applied. The skill sets are used by the Examination Development Committee and to help candidates prepare for the exam.

2.2 Definitions

The skill sets are based on the skills definition proposed by the DTI (Department of Trade and Industry) in the UK for NVQ (National Vocational Qualification) standards [2] and revised skill cards from other countries. It contains the following items:

- **Domain**: An occupational category. E.g. Domain = Process Improvement.
- **Job role**: A certain profession that covers part of the domain knowledge. E.g. Job role = Yellow Belt, Orange Belt, Green Belt or Black Belt.
- **Unit**: A list of certain activities that have to be carried out in the workplace. It is the top-level skill in the qualification standard hierarchy. Each unit consists of a number of elements.
- **Learning element**: Description of one distinct aspect of the work performed by a worker, either a specific task that the worker has to do or a specific way of working. Each element consists of a number of performance criteria.
- **Performance criteria**: Description of the minimum level of performance a participant must demonstrate in order to be assessed as competent.
- **Level of cognition**: For each performance criteria there is an intended level of cognition. At the same time this describes the complexity level of the test questions for each performance criteria, according Bloom’s Taxonomy – Rev. 2001.
2.3 Skill Set Structure

A skills hierarchy for the job role ‘Lean Six Sigma Green Belt’ has been designed using the terminology outlined in the skills definition model and includes the skills identified during the demand analysis performed at the beginning of the project.

In the graph below you will find an example for the first four Skill Units and their Learning elements. The first Learning Element of the first Skill Unit has three Performance Criteria, which are listed in the lower box. In total the Lean Six Sigma skill set for the ‘Orange Belt’ job role is composed of 7 units; 21 learning elements and 72 performance criteria.

![Skill Set Diagram](image)

<table>
<thead>
<tr>
<th>Performance Criteria:</th>
<th>Bloom Cognition Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1.E1.PC1 History of continuous improvement</td>
<td>Remember</td>
</tr>
<tr>
<td>Describe the origins of continuous improvement and its impact on other improvement models.</td>
<td></td>
</tr>
<tr>
<td>U1.E1.PC2 Value and foundations of Lean and Six Sigma</td>
<td>Remember</td>
</tr>
<tr>
<td>Describe the value of Six Sigma, its philosophy, history and goals. Describe the value of Lean, its philosophy and goals. Describe the relationship between Lean and Six Sigma.</td>
<td></td>
</tr>
<tr>
<td>U1.E1.PC3 Six Sigma and Lean applications</td>
<td>Remember</td>
</tr>
<tr>
<td>Know that Lean and Six Sigma can be applied to processes in different types of enterprises (e.g. manufacturing, service, transactional, product and process design, innovation, construction)</td>
<td></td>
</tr>
<tr>
<td>U1.E1.PC4 Lean principles in the organization</td>
<td>Understand</td>
</tr>
<tr>
<td>Know the Toyota philosophy, the 14 principles and understand the impact of the Toyota Production System (TPS) on strategy, quality and production.</td>
<td></td>
</tr>
</tbody>
</table>
3 Orange Belt Skill Set

3.1 U1 – Enterprise-Wide Deployment

The Unit ‘Enterprise Wide Deployment’ discusses the general philosophy of Process Improvement. It handles the overview of different process improvement methods and the history of the most important methods: Lean and Six Sigma. It also explains why process improvement is needed, how it is organised and the different roles and responsibilities involved.

3.1.1 E1 – World Class Performance

The Learning Element ‘World Class Performance’ explains the history, value and principles of Lean and Six Sigma. Similarities and differences to other improvement methods are also reviewed.

U1.E1.PC1 History of continuous improvement
Remember
Describe the origins of continuous improvement and its impact on other improvement models.

U1.E1.PC2 Value and foundations of Lean and Six Sigma
Remember
Describe the value of Six Sigma, its philosophy, history and goals. Describe the value of Lean, its philosophy and goals. Describe the relationship between Lean and Six Sigma.

U1.E1.PC3 Six Sigma and Lean applications
Remember
Know that Lean and Six Sigma can be applied to processes in different types of enterprises (e.g. manufacturing, service, transactional, product and process design, innovation, construction).

U1.E1.PC4 Lean principles in the organization
Understand
Know the Toyota philosophy, the 14 principles and understand the impact of the Toyota Production System (TPS) on strategy, quality and production.

3.1.2 E2 – Leadership

The Learning Element ‘Leadership’ explains the roles and responsibilities of the people involved in process improvement. The different Belt-levels and roles of management, team leaders and team members are also reviewed.

U1.E2.PC1 Roles and responsibilities
Understand
Know Six Sigma level of expertise: Master Black Belt, Black Belt, Green Belt, Orange Belt and Yellow Belt. Know various team roles and responsibilities: Champion, Project leader, Supplier, User, Coach and Team member.

U1.E2.PC2 Change management
Understand
Understand that there are different levels of change. Understand that change might cause resistance.

U1.E2.PC3 Team performance, evaluation and reward
Understand
Esteem and value people in order to improve moral and commitment. Motivate team members and support their participation and commitment.
3.2 U2 – Project Management

The Unit ‘Project Management’ outlines the way improvement projects should be executed. It covers the most common project management tools, the DMAIC improvement roadmap and team facilitation.

3.2.1 E1 – Project Management Tools

The Learning Element ‘Project Management Tools’ sets out the main elements that have to be taken into account during project execution, such as differing interests of stakeholders and project execution within time and budget.

U2.E1.PC1 Stakeholder analysis

Understand there are different stakeholders in a project that have different goals.

U2.E1.PC2 DMAIC roadmap

Understand and follow the Process Improvement DMAIC roadmap.

U2.E1.PC3 Time management

Attending meetings, arrive on-time, coming prepared. Be punctual and to the point. Understand that the contribution of the work floor is important for process improvement.

U2.E1.PC4 Project risk analysis and mitigation

Attending risk assessment meetings and assure useful contribution by identifying risks.

3.2.2 E2 – Team Formation

The Learning Element ‘Team Formation’ discusses the various types of teams and the process for selecting team members.

U2.E2.PC1 Team member selection

Understand the basic principles of team formation and team member selection.

3.2.3 E3 – Team Facilitation

The Learning Element ‘Team Facilitation’ discusses the dynamics that can occur during a project such as cooperation, resistance, escalation of problems and solving roadblocks.

U2.E3.PC1 Team dynamics and performance

Be constructive and pro-active. Looking for solutions rather than roadblocks.
3.2.4 E4 – Communication
The Learning Element ‘Communication’ reviews the communication and decision making process within a team. The presentation of project progress is also reviewed.

U2.E4.PC1 Effective communication
Understand
Understand the importance of effective and appropriate communication.

U2.E4.PC2 Project Progress and presentation skills
Apply
Prepare presentation and present project results to other team members and superior.

U2.E4.PC3 Decision making
Apply
Apply brainstorming and contribute in brainstorm meetings.

3.3 U3 – Define
Define is the first phase within the DMAIC roadmap. The Unit ‘Define’ discusses the elements that have to be taken into account during the first phase of a process improvement project such as the project charter and customer requirement.

3.3.1 E1 – Voice of the Customer (VOC)
The Learning Element ‘Voice of the Customer’ reviews customer requirements (internal/external) and the flow down of these requirements to measurable criteria for the product and/or process.

U3.E1.PC1 Customer identification
Understand
Know how the project will impact customers. Identify internal and external customers.

U3.E1.PC2 Customer requirements
Understand
Understand different customers have different needs, expectations, requirements and desires.

U3.E1.PC3 Customer demand
Apply
Calculate customer takt time. Distinguish between takt time and cycle time.

U3.E1.PC4 Critical requirements (CTx)
Understand
Know there are various CTx requirements (critical to quality (CTQ), cost (CTC), process (CTP), safety (CTS) and delivery (CTD)).

U3.E1.PC5 CTx Flowdown
Understand
Understand the Voice of the customer (VOC) requirements need to be translated into CTx targets and specifications.
3.3.2 E2 – Project Charter
The Element ‘Project Charter’ covers the description of the project such as problem description, objectives, scope, timing and benefits.

U3.E2.PC1 Problem statement
Review problem statement in relation to customer requirements.

U3.E2.PC2 Project scope and goal
Review project boundaries of the project (scope). Understand the objectives and measurable targets for the project based on the problem statement and scope (goal).

U3.E2.PC3 Project performance measures
Understand performance measurements Cost, Quality and Delivery.

U3.E2.PC4 Project benefits calculation
Understand the hard benefits and the soft benefits of the project.

3.4 U4 – Measure
Measure is the second phase within the DMAIC roadmap. The Unit ‘Measure’ describes the measurability of the process/product responses and factors of influence. The Unit also reviews several process mapping methods, types of data and the reliability of the measurement method. This Unit also discusses statistics and visualisation of data.

3.4.1 E1 – Process Mapping & Data Collection
The Learning Element ‘Process Mapping & Data Collection’ sets out the different ways of process mapping to visualise the process. This Element also covers types of data and the accuracy and integrity of data.

U4.E1.PC1 Input and output variables (SIPOC)
Apply
Assist in identifying input and output process variables and constructing PFM (Process Flow Mapping), SIPOC or Cause & Effect matrix.

U4.E1.PC2 Process flow modelling and metrics
Apply
Develop process maps and flowcharts.

U4.E1.PC3 Types of data
Understand
Understand the difference between quantitative, qualitative and discrete, continuous, attributive data.

U4.E1.PC4 Sampling methods for assuring data accuracy and integrity
Understand
Understand methods for collecting data such as check sheets. Understand it is important to follow systematic data collection.
U4.E1.PC5 Measurement scales Understand
Understand nominal, ordinal, interval and ratio scales.

3.4.2 E2 – Statistics
The Learning Element ‘Statistics’ reviews the basics of statistics such as mean, deviation and probability. This Learning Element reviews a range of graphs that can be used to visualise data as well.

U4.E2.PC1 Basic terms Understand
Understand basic terms of statistics (e.g. proportion, mean, standard deviation and range).

U4.E2.PC2 Visualization of data Apply
Understand and interpret diagrams and charts, including Pareto, Bar Chart, Pie Chart, Time Series Plot, Scatter Plot, Histogram and Box plot.

U4.E2.PC3 Commonly used distributions Understand
Understand and interpret Normal, Poisson and Binomial distributions.

3.4.3 E3 – Measurement Systems
The Learning Element ‘Measurement Systems’ examines the reliability of the measurement system.

U4.E3.PC1 Measurement methods Understand
Understand measurement methods for both continuous and discrete data.

U4.E3.PC2 Measurement systems analysis Understand
Understand the basic principles of performing a Measurement System Analysis. Understand the difference between repeatability and reproducibility (R&R) and the meaning of the number of distinct categories.

U4.E3.PC3 Metrology Understand
Recognize elements of metrology, including calibration systems, traceability to reference standards, the control and integrity of standards and measurement devices.

3.4.4 E4 – Process Capability and Performance

U4.E4.PC1 Process performance metrics Apply
Calculate process performance metrics such as percent defective, parts per million (PPM), defects per million opportunities (DPMO), defects per unit (DPU) and rolled throughput yield (RTY). Know the difference between a defect and a defective.
U4.E4.PC2 Process capability studies
Conduct process capability studies. Collecting data. Understand the importance of stability in process capability studies.

U4.E4.PC3 Short-term and long-term capability
Understand there is a difference between long-term and short-term capability.

U4.E4.PC4 Process capability indices
Calculate \(\text{Cp} \) and \(\text{Cpk} \) to assess process capability.

U4.E4.PC5 Process performance indices
Understand basic process performance indices such as \(\text{Pp} \) and \(\text{Ppk} \).

3.5 U5 – Analyse

Analyse is the third phase within the DMAIC roadmap. The Unit ‘Analyse’ reviews the analysis of current process performance. The different elements will review Risk Analysis, Root Cause Analysis, Waste Identification, Regression Analysis and Analysis of Variance.

3.5.1 E1 – Exploratory Data Analysis
The Learning Element ‘Exploratory Data Analysis’ describes the predictive models using regression techniques to determine the relation between factors on a response. This Learning Element also covers process performance metrics and the method for determining the capability of a process to meet specifications.

U5.E1.PC1 Regression analysis
Understand linear regression and its statistical significance. Use regression models for estimation and prediction.

U5.E1.PC2 Correlation coefficient
Interpret the correlation coefficient.

3.5.2 E2 – Hypothesis Testing
The Learning Element ‘Hypothesis testing’ reviews test methods that are used to test a hypothesis. This Learning Element also discusses Confidence Intervals that indicate the reliability of test conclusions.

U5.E2.PC1 Terminology
Interpret type I and type II errors of statistical tests.

U5.E2.PC2 Statistical vs. practical significance
Understand the meaning of statistical and practical significance.
U5.E2.PC3 Sample size Understand
Understand sample size has an influence on confidence.

U5.E2.PC4 Point and interval estimates/Confidence Intervals Understand
Understand and interpret confidence intervals. Distinguish between confidence and prediction intervals.

U5.E2.PC5 Tests for means, variances and proportions Understand
Understand and interpret the results of hypothesis tests for means.

3.5.3 E3 – Analytical Methods
The Learning Element ‘Analytical Methods’ describes the tools that can be used for risk analysis, root cause analysis and waste identification.

U5.E3.PC1 Failure mode and effects analysis (FMEA) Understand
Know the purpose and elements of FMEA, including risk priority number (RPN) and describe FMEA results for processes.

U5.E3.PC2 Root cause analysis Apply
Apply root cause analysis and understand the issues involved in identifying a root cause. Apply problem solving process and tools (5-Why and Cause and Effect diagrams / Ishikawa) for analysing problems.

U5.E3.PC3 Waste identification Apply
Identify and interpret the 8 types of waste (Overproduction, Waiting, Transport, Overprocessing, Inventory, Movement, Defects, Unused expertise).

U5.E3.PC4 Value Stream Mapping (Current State) Understand
Distinguish value added from non value added activities. Know Value Stream Mapping is a technique for identify waste and non value added activities.
3.6 U6 – Improve

Improve is the fourth phase within the DMAIC roadmap. The Unit ‘Improve’ discusses the identification, implementation and verification of improvements that solve a problem, eliminate waste or improve quality or process performance.

3.6.1 E1 – Process Improvement Methods

The Learning Element ‘Process Improvement Methods’ sets out a series of methods and tools that can be used for process improvement, such as 5S, Kaizen, 8D, Theory of Constraints and Total Productive Maintenance.

U6.E1.PC1 Organized work environment (5S)
Apply
Organizing the work environment by applying 5S (Sort, Straighten, Shine, Standardize, Sustain). Understand an organized environment will improve safety and moral.

U6.E1.PC2 Improvement teams (Kaizen)
Apply
Setup and lead improvement teams such as Kaizen or Small Group Activities.

U6.E1.PC3 Basic Problem Solving (8D)
Understand
Familiar with the eight disciplines problem solving process which is used to approach and resolve problems.

U6.E1.PC4 Theory of constraints (TOC)
Remember
Know why it is important to identify the bottle necks in a process.

U6.E1.PC5 Total Productive Maintenance (TPM)
Understand
Understand the eight pillars of TPM and know how it can be used for process improvement.

3.6.2 E2 – Waste Elimination

The Learning Element ‘Waste Elimination’ discusses improving the organisation of a production line or process. This Learning Element also explains line balancing, Flow, Pull, quick change-overs and doing things right the first time.

U6.E2.PC1 Value Stream Mapping (Future State)
Understand
Understand the difference between current state and future state Value Stream Mapping.

U6.E2.PC2 Work and Line Balancing (Flow and Pull)
Understand
Understand basic principles of line balancing, Flow and Pull.
U6.E2.PC3 **Quick Change Over (SMED)** **Understand**
Support work and line balancing by reducing change over times by applying Single Minute Exchange of Dies (SMED). Reduce materials, skilled resources and time necessary to equipment setup and product change over.

U6.E2.PC4 **First Time Right (FTR)** **Understand**
Understand the line has to be stopped when there is a quality problem. Identify opportunities to apply Poka Yoke to avoid quality problems.

3.6.3 E3 – Design of Experiments (DOE)

The Learning Element ‘Design of Experiments’ reviews the design and evaluation of Full Factorial and Fractional experiments. These efficient experiments examine the influence of factors and interactions on a process.

U6.E3.PC1 **Design principles and terminology** **Understand**
Understand basic DOE principles and terms (Responses, Factors, Levels, Run Order, Randomization) Understand benefits of the systematic DOE approach.

3.7 U7 – Control

Control is the fifth phase within the DMAIC roadmap. The Unit ‘Control’ is about sustaining achievements and discusses the tools and procedures that ensure good quality. The elements that are reviewed include Statistical Process Control, Visual Management, Standardisation and Documentation.

3.7.1 E1 – Statistical Process Control (SPC)

The Learning Element ‘Statistical Process Control’ explains the controls methods used to identify out-of-control situations and deviations over time. Different types of SPC charts are reviewed.

U7.E1.PC1 **Objectives and benefits** **Understand**
Understand the objectives and benefits of SPC.

U7.E1.PC2 **Selection and application of control charts** **Understand**
Understand the different types of control charts such as Xbar-R.

U7.E1.PC3 **Control chart analysis** **Understand**
Understand the difference between special cause and common cause variation.

“This project has been funded with support from the European Commission. This publication reflects the views only of the author, and the Commission cannot be held responsible for any use which may be made of the information contained therein.”
3.7.2 E2 – Quality Assurance
The Learning Element ‘Quality Assurance’ establishes a series of tools and procedures that can be used to measure, communicate and ensure quality such as visual management and controls.

U7.E2.PC1 Visual Management Apply
Apply elements of Visual Management and understand how these can help to control the improved process.

U7.E2.PC2 Control plan Understand
Assist in developing a control plan to document and hold gains and assist in implementing controls and monitoring systems.

3.7.3 E3 – Sustain Improvements
The ‘Sustain Improvements’ Learning Element discusses methods for maintaining achievements, becoming a learning organisation, standardisation and documentation.

U7.E3.PC1 Lessons learned Apply
Identify and document learning opportunities and hand over to superior. Identify possible actions and ownership.

U7.E3.PC2 Standardized work and Documentation Understand
Support standardization of tasks and processes to establish the foundation for continuous improvement. Support document modification including standard operating procedures (SOPs) and work instructions to ensure that the improvements are sustained over time.

U7.E3.PC3 Training deployment Understand
 Identify opportunities for developing skills.
Appendix A – Bloom's Taxonomy for Performance Criteria

In addition to specifying content, each performance criteria in this skill set also indicates the intended complexity level of the test questions for each topic. These levels are based on “Levels of Cognition” (from Bloom’s Taxonomy – Revised, 2001), and can be used to create learning outcomes for students [7].

The Taxonomy of Educational Objectives, often called Bloom’s Taxonomy, is a classification of the different objectives that educators set for students (learning objectives). The taxonomy was proposed in 1956 by Benjamin Bloom, an educational psychologist at the University of Chicago. During the nineties, Lorin Anderson a former student of Bloom revisited the cognitive domain in the learning taxonomy [8]. Bloom’s Taxonomy divides educational objectives into three “domains”: Affective, Psychomotor and Cognitive. This Skill only notice the Cognitive domain.

The ‘Levels of Cognition’ are in rank order - from least complex to most complex.

Remember
Recall or recognise terms, definitions, facts, ideas, materials, patterns, sequences, methods, principles, etc.

Understand
Read and understand descriptions, communications, reports, tables, diagrams, directions, regulations, etc.

Apply
Know when and how to use ideas, procedures, methods, formulas, principles, theories, etc.

Analyse
Break down information into its constituent parts and recognise their relationship to one another and how they are organised; identify sublevel factors or salient data from a complex scenario.

Evaluate
Make judgments about the value of proposed ideas, solutions, etc., by comparing the proposal to specific criteria or standards.

Create
Put parts or elements together in such a way as to reveal a pattern or structure not clearly there before; identify which data or information from a complex set is appropriate to examine further or from which supported conclusions can be drawn
Appendix B – European Qualifications Framework (EQF) for Job roles

The European Qualifications Framework (EQF) acts as a translation device to make national qualifications more readable across Europe, promoting workers’ and learners’ mobility between countries and facilitating their lifelong learning.

The core of the EQF are 'learning outcomes' which are eight reference levels describing what a learner knows, understands and is able to do. [8]

<table>
<thead>
<tr>
<th>Level</th>
<th>Knowledge</th>
<th>Belt level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1</td>
<td>Basic general knowledge</td>
<td></td>
</tr>
<tr>
<td>Level 2</td>
<td>Basic factual knowledge of a field of work or study</td>
<td></td>
</tr>
<tr>
<td>Level 3</td>
<td>Knowledge of facts, principles, processes and general concepts, in a field of work or study</td>
<td></td>
</tr>
<tr>
<td>Level 4</td>
<td>Factual and theoretical knowledge in broad contexts within a field of work or study</td>
<td>Lean Six Sigma Yellow Belt</td>
</tr>
<tr>
<td>Level 5</td>
<td>Comprehensive, specialised, factual and theoretical knowledge within a field of work or study and an awareness of the boundaries of that knowledge</td>
<td>Lean Six Sigma Orange Belt</td>
</tr>
<tr>
<td>Level 6</td>
<td>Advanced knowledge of a field of work or study, involving a critical understanding of theories and principles</td>
<td>Lean Six Sigma Green Belt</td>
</tr>
</tbody>
</table>
| Level 7 | • Highly specialised knowledge, some of which is at the forefront of knowledge in a field of work or study, as the basis for original thinking and/or research
 • Critical awareness of knowledge issues in a field and at the interface between different fields | Lean Six Sigma Black Belt |
| Level 8 | Knowledge at the most advanced frontier of a field of work or study and at the interface between fields | Lean Six Sigma Master Black Belt |
Appendix B – Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>APL</td>
<td>Accreditation of Prior Learning</td>
</tr>
<tr>
<td>ASQ</td>
<td>American Society of Quality</td>
</tr>
<tr>
<td>CREDIT</td>
<td>Accreditation of Skills via the Internet</td>
</tr>
<tr>
<td>YB</td>
<td>Lean Six Sigma Yellow Belt</td>
</tr>
<tr>
<td>OB</td>
<td>Lean Six Sigma Orange Belt</td>
</tr>
<tr>
<td>GB</td>
<td>Lean Six Sigma Green Belt</td>
</tr>
<tr>
<td>BB</td>
<td>Lean Six Sigma Black Belt</td>
</tr>
<tr>
<td>LSSA</td>
<td>Lean Six Sigma Academy, www.lssa.eu</td>
</tr>
<tr>
<td>NVQ</td>
<td>National Vocational Qualification standard of England, Wales and N. Ireland</td>
</tr>
<tr>
<td>EQF</td>
<td>European Qualifications Framework</td>
</tr>
<tr>
<td>ECQA</td>
<td>European Certification and Qualification Association, www.ecqa.org</td>
</tr>
</tbody>
</table>

The LSSA has developed an abbreviation list with over 200 Lean Six Sigma terms and abbreviations. It is available online in five different languages at www.lssa.eu.
Appendix C – References

[1] *CREDIT Project*, Accreditation Model Definition, MM 1032 Project CREDIT, Version 2.0, University of Amsterdam, 15.2.99

It is important for businesses and organisations to continuously focus on customer satisfaction by supplying products or services with outstanding quality, cost efficiently and within the agreed lead time. Improving quality and efficiency is the domain of ‘Process Improvement’.

Realising these objectives is effectively achieved by applying Lean Six Sigma: a combination of Lean Manufacturing and Six Sigma approaches. Within Lean Six Sigma, individuals can be trained at various ‘Belt levels’. These levels are called Black Belt, Green Belt, Orange Belt and Yellow Belt.

The LSSA – Lean Six Sigma Academy – was established in September 2009, with the main objective to determine a common certification standard for Lean Six Sigma job roles. This has been realised by developing four skill sets with clear criteria and an online exam portal. This document describes the Orange Belt skill set.

H.C. Theisens / J. Kamphuis / W. Heijnen
Contributors of Job Role Specific Content:
M. Wiggers, T. Meek, G. Spork
D. Ekert, Dr. R. Messnarz,
A. Riel, S. Hoekstra